Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 649: 592-600, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30176470

RESUMO

Dichlorvos (DDVP) is an organophosphorus pesticide that has been classified as highly hazardous chemical by the World Health organization. In this study, the fate of the pesticide DDVP in natural water compartments was examined under simulated sunlight. Moreover, the effect of UV-254 irradiation on DDVP depletion was also studied. In deionized water, DDVP was photodegraded only in the presence of dissolved molecular oxygen. The photodegradation during the first 6 h of sunlight irradiation occurred with pseudo first-order kinetics, and the rate constants were 0.040 h-1 at pH 7 and 0.064 h-1 at pH 3. A reaction mechanism for the generation of reactive oxygen species (ROS) via DDVP photoabsorption was proposed. Humic acids (HA) played a double role as photosensitizer and inhibitor, observing an enhancement on DDVP photodegradation at low HA concentration (TOC = 2 mg L-1). The depletion of DDVP under 254 nm UV irradiation was ascribed to direct photodegradation and oxygen mediated photoinduced reactions. Direct photodegradation of DDVP decreased with 254 nm irradiation reduction, highlighting the importance of radical mediated mechanisms at low irradiation doses. Based on LC/MS data, the main photoproducts under simulated solar light and UV-C irradiation were identified and potential reaction pathways were postulated. The three main identified products were o-methyl 2,2-dichlorovinyl phosphate, dichloroacetaldehyde and dimethylphosphate. Moreover, the toxicity of samples was evaluated along the irradiation exposure time using Microtox® assays. This study brings new insights into the role of oxygen in the photodegradation of DDVP and the induced and inhibition mechanisms involved in the presence of the humic acids in natural waters.

2.
Chemosphere ; 204: 398-404, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29677647

RESUMO

The presence of arsenic (As) in groundwater is a major problem in several parts of Latin America. In the present work, non-destructive approaches to monitor the effects of As on plants of Cichorium intybus, an herbaceous Asteraceae, were explored. In this sense, the effects of As at different levels of water and radiation were evaluated on these crops. Plants were grown in a greenhouse, watered daily with As solutions and exposed to different water and/or light conditions for four months, using a three-factor (As, water, radiation) and two-level resource (As vs non As, field capacity vs half-field capacity condition, light vs shade condition) factorial design. The parameters most affected by this treatment were the area under the first derivative of the reflectance spectrum in the blue region, chlorophyll concentration, the Fred/Ffar-red fluorescence ratio and the quantum yield for the photophysical decay. These changes indicated the ability of this plant species to be a biomonitor for the presence of arsenic in irrigation water. Interestingly, it was further proved in this work that the biomonitoring capacity was enhanced in the presence of sunlight.


Assuntos
Irrigação Agrícola/métodos , Arsênio/toxicidade , Cichorium intybus/fisiologia , Monitoramento Ambiental/métodos , Luz Solar/efeitos adversos , Cichorium intybus/efeitos dos fármacos , Cichorium intybus/efeitos da radiação , Clorofila/química , Fluorescência , Água/química
3.
Ecotoxicol Environ Saf ; 149: 166-172, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29169093

RESUMO

The use of natural sorbents to remove fluoride from drinking water is a promising alternative because of its low-cost and easy implementation. In this article, fluoride adsorption on a latosol soil from Misiones province (Argentina) was studied regarding kinetic and equilibrium aspects. Experiments were conducted in batch at room temperature under controlled conditions of pH 4-8) and ionic strength (1-10mM KNO3). Experimental data indicated that adsorption processes followed a PSO kinetic where initial rates have showed to be influenced by pH solution. The necessary time to reach an equilibrium state had resulted approximately 30min. Equilibrium adsorption studies were performed at pH 8 which is similar to the natural groundwater. For that, fluoride adsorption data were successfully adjusted to Dubinin-Ataskhov model determining that the fluoride adsorption onto soil particles mainly followed a physical mechanism with a removal capacity of 0.48mgg-1. Finally, a natural groundwater was tested with laterite obtaining a reduction close to 30% from initial concentration and without changing significantly the physicochemical properties of the natural water. Therefore, it was concluded that the use of lateritic soils for fluoride removal is very promising on a domestic scale.


Assuntos
Fluoretos/análise , Solo/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Argentina , Água Potável/química , Água Subterrânea/química , Concentração de Íons de Hidrogênio , Cinética , Concentração Osmolar , Soluções
4.
Chemosphere ; 138: 383-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26143400

RESUMO

Arsenic (V) uptake from groundwater by using Vallisneria gigantea plants was studied using batch experiments. Reflectance and fluorescence of intact plants were investigated and changes in photophysical properties following arsenic absorption were reported. Good correlations have been found between arsenic concentration in groundwater and parameters derived from reflectance and fluorescence measurements. This system reached its equilibrium after seven days when the removal quantities were strongly dependent on the initial arsenic concentration. Interestingly, Vallisneria plants were able to accumulate from 100 to 600 mg As kg(-1) in roots and fronds although the translocation factors were low (0.6-1.6). Kinetic data for biosorption process followed a first-order law. At low arsenic concentrations the uptake in plants was governed by diffusion aspects. Langmuir, Freundlich and Dubinin-Radushkevich models were applied and results demonstrated that arsenic uptake was better described by the Langmuir model. As a final remark we concluded that a plant of this species should be able to remove 1mg As per week.


Assuntos
Arsênio/química , Arsênio/isolamento & purificação , Água Subterrânea/química , Hydrocharitaceae/química , Fenômenos Físicos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Difusão , Concentração de Íons de Hidrogênio , Cinética , Modelos Teóricos
5.
Photochem Photobiol Sci ; 14(9): 1538-59, 2015 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-26103563

RESUMO

Fluorescence is emitted by diverse living organisms. The analysis and interpretation of these signals may give information about their physiological state, ways of communication among species and the presence of specific chemicals. In this manuscript we review the state of the art in the research on the fluorescence emitted by plant leaves, fruits, flowers, avians, butterflies, beetles, dragonflies, millipedes, cockroaches, bees, spiders, scorpions and sea organisms and discuss its relevance in nature.

6.
Chemosphere ; 119: 697-703, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25150973

RESUMO

Arsenic pollution of groundwater is a serious problem in many regions of Latin America that causes severe risks to human health. As a consequence, non-destructive monitoring methodologies, sensitive to arsenic presence in the environment and able to perform a rapid screening of large polluted areas, are highly sought-after. Both chlorophyll - a fluorescence and reflectance of aquatic plants may be potential indicators to sense toxicity in water media. In this work, the effects of arsenic on the optical and photophysical properties of leaves of different aquatic plants (Vallisneria gigantea, Azolla filiculoides and Lemna minor) were evaluated. Reflectance spectra were recorded for the plant leaves from 300 to 2400 nm. The spectral distribution of the fluorescence was also studied and corrected for light re-absorption processes. Photosynthetic parameters (Fv/Fm and ΦPSII) were additionally calculated from the variable chlorophyll fluorescence recorded with a pulse amplitude modulated fluorometer. Fluorescence and reflectance properties for V. gigantea and A. filiculoides were sensitive to arsenic presence in contrast to the behaviour of L. minor. Observed changes in fluorescence spectra could be interpreted in terms of preferential damage in photosystem II. The quantum efficiency of photosystem II for the first two species was also affected, decreasing upon arsenic treatment. As a result of this research, V. gigantea and A. filiculoides were proposed as bioindicators of arsenic occurrence in aquatic media.


Assuntos
Araceae/efeitos dos fármacos , Arsênio/toxicidade , Monitoramento Ambiental , Gleiquênias/efeitos dos fármacos , Fluorescência , Hydrocharitaceae/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Clorofila/química , Clorofila/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/efeitos dos fármacos , Especificidade da Espécie
7.
Photochem Photobiol ; 90(1): 107-12, 2014 01.
Artigo em Inglês | MEDLINE | ID: mdl-23869421

RESUMO

In this work, we use the effect of herbicides that affect the photosynthetic chain at defined sites in the photosynthetic reaction steps to derive information about the fluorescence emission of photosystems. The interpretation of spectral data from treated and control plants, after correction for light reabsorption processes, allowed us to elucidate current controversies in the subject. Results were compatible with the fact that a nonnegligible Photosystem I contribution to chlorophyll fluorescence in plants at room temperature does exist. In another aspect, variable and nonvariable chlorophyll fluorescence were comparatively tested as bioindicators for detection of both herbicides in aquatic environment. Both methodologies were appropriate tools for this purpose. However, they showed better sensitivity for pollutants disconnecting Photosystem II-Photosystem I by blocking the electron transport between them as Atrazine. Specifically, changes in the (experimental and corrected by light reabsorption) red to far red fluorescence ratio, in the maximum photochemical quantum yield and in the quantum efficiency of Photosytem II for increasing concentrations of herbicides have been measured and compared. The most sensitive bioindicator for both herbicides was the quantum efficiency of Photosystem II.


Assuntos
Atrazina/toxicidade , Clorofila/metabolismo , Paraquat/toxicidade , Complexo de Proteína do Fotossistema I/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Fluorescência , Herbicidas/toxicidade , Folhas de Planta/metabolismo
8.
Photochem Photobiol ; 89(6): 1383-90, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23829713

RESUMO

The organs of Origanum vulgare L. plant were examined by optical microscopy, scanning electron microscopy and autofluorescence imaging. The different organs were also studied spectroscopically. Fluorescence emission spectra were recorded for intact inflorescences, leaves and stems. Several fluorescence ratios (Blue/Red, Blue/Far-red, Green/Red and Green/Far-red), which varied depending on the considered organ of the plant, were derived. For leaves, a dependence of fluorescence spectra with water content was obtained as well. The intact samples were also analyzed by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy. These spectra were transformed to the Remission function depending on the wavenumber and two absorption bands (811 and 1740 cm(-1)), which displayed differences according to the plant organ sampled, were detected. These results were consistent with higher carvacrol content in inflorescences. The spectroscopic results were connected with the microscopic observation and with the presence of relevant nutraceutics contained in the plant. The optical indexes derived in this work may serve as potential indicators to be explored in the development of nondestructive methods for oregano quality assessment.


Assuntos
Microscopia de Fluorescência/métodos , Origanum/química , Espectrometria de Fluorescência/métodos , Microscopia Eletrônica de Varredura
9.
Photochem Photobiol Sci ; 11(4): 724-30, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22337099

RESUMO

Kiwi fruit displays chlorophyll fluorescence. A physical model was developed to reproduce the observed original fluorescence for the whole fruit, from the emission of the different parts of the kiwi fruit. The spectral distribution of fluorescence in each part of the fruit, was corrected to eliminate distortions due to light re-absorption and it was analyzed in relation to photosystem II-photosystem I ratio. Kiwi fruit also displays variable chlorophyll-fluorescence, similar to that observed from leaves. The maximum quantum efficiency of photosystem II photochemistry (F(v)/F(m)), the quantum efficiency of photosystem II (Φ(PSII)), and the photochemical and non-photochemical quenching coefficients (q(P) and q(NP) respectively) were determined and discussed in terms of the model developed. The study was extended by determining the photosynthetic parameters as a function of the storage time, at both 4 °C and room temperature for 25 days.


Assuntos
Actinidia/metabolismo , Clorofila/química , Modelos Químicos , Frutas/metabolismo , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Espectrofotometria Ultravioleta
10.
Naturwissenschaften ; 97(10): 915-24, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20811871

RESUMO

Flower fluorescence has been previously proposed as a potential visual signal to attract pollinators. In this work, this point was addressed by quantitatively measuring the fluorescence quantum yield (Φ(f)) for flowers of Bellis perennis (white, yellow, pink, and purple), Ornithogalum thyrsoides (petals and ovaries), Limonium sinuatum (white and yellow), Lampranthus productus (yellow), Petunia nyctaginiflora (white), Bougainvillea spectabilis (white and yellow), Antirrhinum majus (white and yellow), Eustoma grandiflorum (white and blue), Citrus aurantium (petals and stigma), and Portulaca grandiflora (yellow). The highest values were obtained for the ovaries of O. thyrsoides (Φ(f) = 0.030) and for Citrus aurantium petals (Φ(f) = 0.014) and stigma (Φ(f) = 0.013). Emitted photons as fluorescence were compared with reflected photons. It was concluded that the fluorescence emission is negligible compared to the reflected light, even for the most fluorescent samples, and it may not be considered as an optical signal in biocommunication. The work was complemented with the calculation of quantum catches for each studied flower species to describe the visual sensitization of eye photoreceptors.


Assuntos
Comunicação , Flores/fisiologia , Citrus/fisiologia , Cor , Fluorescência , Luz , Ornithogalum/fisiologia , Fótons , Espectrofotometria
11.
Photochem Photobiol Sci ; 9(3): 342-8, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20221460

RESUMO

A quantitative evaluation of the light emerging from intact petals of Rhododendron indicum flowers of different colours was performed. Reflectance and fluorescence emission were analyzed in detail. The fluorescence quantum yield of petals was determined on entire flowers. The obtained values varied from 7.6 x 10(-5) to 6.3 x 10(-4) for the emission in the blue region of the electromagnetic spectrum and from 2.4 x 10(-5) to 1.9 x 10(-4) for the emission in the red one. The fluorescence emission that resulted was negligible compared to the light reflected by the petals, so it was concluded that in this case only reflectance signals should be relevant in biosignal communication with pollinators. In addition, a quantitative estimation of the relative amount of photons absorbed by eye photoreceptors was achieved. Quantum catches were calculated for humans, for honeybees and for a species of bird. Contrasts to background values were also estimated in relation to the ability to detect flowers.


Assuntos
Comportamento Animal , Visão de Cores , Flores/química , Rhododendron/química , Animais , Abelhas/fisiologia , Aves/fisiologia , Fluorescência , Humanos
12.
Photochem Photobiol Sci ; 8(3): 337-44, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19255674

RESUMO

Reflectance spectra from pink petals of Rhododendron indicum flowers showed absorption in the NIR (1470, 1930 and 2500 nm) due to water, in the visible (533 nm, due to anthocyanins) and in the UV (broad absorption due to phenolic compounds other than anthocyanins). A linear correlation between the remission function at 533 nm and the anthocyanin content in micromol per g fresh weight has been found, allowing non-destructive quantification of anthocyanins. The remission function could be obtained either from reflectance of a group of stacked petals (Kubelka-Munk theory) or through determination of the absorption and scattering coefficients following the Pile of Plates model. The intact petals have shown fluorescence emission in the blue (400-500 nm) and in the visible around 624 nm under UV excitation. The red emission was attributed to anthocyanins whereas blue emission was assigned to other phenolic compounds. On the basis of absorption and fluorescence measurements of crude and purified extracts from the petals, the last compounds could possibly be a mixture of flavonoids and hydroxycinnamic-type plant phenolics such as ferulic acid, chlorogenic acid or others.


Assuntos
Antocianinas/química , Flores/química , Rhododendron/química , Flavonoides/química , Flores/efeitos da radiação , Fenóis/química , Pigmentos Biológicos/química , Espectrometria de Fluorescência
13.
Photochem Photobiol ; 82(1): 200-7, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16149857

RESUMO

Absorption and fluorescence properties of methylene blue (MB), a well-known singlet molecular oxygen photosensitizer, and its mixtures with pheophorbide-a (Pheo) sorbed on microgranular cellulose are studied, with emphasis on radiative and nonradiative energy transfer from Pheo to MB. Although pure MB builds up dimeric species on cellulose even at 2 x 10(-8) mol g(-1), addition of 2.05 x 10(-7) mol g(-1) Pheo largely inhibits aggregation up to nearly 10(-6) mol g(-1) MB. At the same time, the absorption spectrum of monomeric MB in the presence of Pheo differs from the spectrum in pure cellulose. Both effects reveal a strong influence of Pheo on the medium properties. A model relying entirely on experimental data is developed, through which energy transfer efficiencies can be calculated for thin and thick layers of dye-loaded cellulose. At the largest concentration of MB assuring no dye aggregation, nonradiative energy transfer efficiencies reach a maximum value of nearly 40%. This value is quite high, taking into account the low fluorescence quantum yield of Pheo, Phi = 0.21, and results from the existence of high local concentrations of the acceptor within the supporting material. These results show that large energy transfer rates can exist in a system devoid of any special molecular organization.


Assuntos
Clorofila/análogos & derivados , Corantes/química , Celulose , Clorofila/química , Transferência de Energia , Azul de Metileno , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...